
 INTERNAL TABLES

UNIT – V

Dr.A.DEVI

 Associate Professor

Department of Computer Applications

DRSNSRCAS

 INTERNAL TABLES

Internal Tables

Introduction
Dealing with internal tables is one of the most important parts of working with ABAP. In-

ternal tables have been hinted at briefly before, but not examined in any great depth. This

chapter will do precisely that. If one is working in ABAP in any way at all, it is crucial to

un- derstand internal tables, as almost every program will use them. You have to

understand both the old method of using header lines, and the new method using separate

work ar- eas. SAP has existed a long time, and while practices change, one will still often

find old methods being used. When one is creating new programs, though, the newer

method is always to be used.

Internal tables only ever exist when a program is running, so when the code is written, the

internal table must be structured in such a way that the program can make use of it. You

will find that internal tables operate in the same way as structures. The main difference

being that Structures only have one line, while an internal table can have as many as re-

quired.

Internal tables are used for many purposes in ABAP. They can be used to hold results of

calculations to then use later in the program, hold records and data so that this can be

accessed quickly rather than having to access this data from database tables, and a great

number of other things. They are hugely versatile, as they can be defined using any num-

ber of other defined structures, allowing, for example, many tables to be grouped to- gether

and then placed into one internal table.

The basic form of these consists of a table body, which is all of the records within the ta-

ble, and a header record in the case of the older-style internal table. In the case of the newer

style of internal table, the header record is absent and replaced by a separate work area. The

header line or work area is used when you read a record from the internal table, providing a

place for this ‘current’ record to be placed which can then be accessed di- rectly. The

header line or work area is also used and populated if you need to add a new record to the

table, which is then transferred from the structure to the table body itself.

 INTERNAL TABLES

Previously, the TABLES statement has been used to include a table which has been created

in the ABAP dictionary in a program. Internal tables, on the other hand, have to be de-

clared themselves. When this is done, you must also declare whether a header record or

separate work area will be used.

When creating new programs with internal tables it is best practice to use separate work

areas. Using a header record has a number of restrictions, for example, you are not able to

create multi-dimensional tables. We will not be cover multi-dimensional tables at length

here, but if you plan to go further with ABAP, they will become important.

There are some restrictions on the records which can be held in internal tables. The archi-

tecture of an SAP system limits the size of internal tables to around 2GB. It is also impor-

tant to bear in mind how powerful one’s SAP system is (the hardware and operating sys-

tem). It is generally best practice to keep internal tables as small as possible, so as to avoid

the system running slowly as it struggles to process enormous amounts of data.

Types of Internal Tables
Now the difference between the older and newer style internal tables has been men- tioned,

from here on, assume that it is the newer kind which is being discussed - an inter- nal table

with a work area.

An internal table can be made up of a number of fields, corresponding to the columns of a

table, just as in the ABAP dictionary a table was created using a number of fields. Key

fields can also be used with in internal tables and when creating these internal tables offer

slightly more flexibility. In the ABAP dictionary, using key fields is imperative to uniquely

identify each record. With internal tables, one can specify a non-unique key, allowing any

number of non-unique records to be stored, allowing duplicate records to be stored if re-

quired.

Different types of internal tables can also be created, so that data can be accessed in the

most efficient manner possible.

Standard Tables

First, there are standard tables. These give the option of accessing records using a table key

or an index. When these tables are then accessed using a key, the larger the internal table is,

the longer it will take to access the records. This is why the index option is also available.

Standard tables do not give the option of defining a unique key, meaning the

 INTERNAL TABLES

possibility of having identical lines repeated many times throughout the table. Addition-

ally, though, this means that standard tables can be filled with data very quickly, as the

system does not have to spend time checking for duplicate records. Standard tables are the

most commonly used type of internal table in SAP systems.

Sorted Tables

Another type of internal table is the sorted table. With these, a unique key can be defined,

forcing all records in the table to be unique, removing duplication. These can again be ac-

cessed via the key or index. As the records are all unique, using the table key to find re-

cords is much quicker with sorted tables, though still not the fastest in all situations. It is

often preferable to use a sorted table over a standard table, given the faster access speeds

and the fact that this kind of table will sort records into a specific sequence. This gives one

a substantial performance increase when accessing data.

Hashed Table

The final type of internal table to be discussed here is a hashed table. With these, an index

is not used to access the data, only a unique key. When it comes to speed, these are likely to

be the preferred option. These are recommended particularly when one is likely to be

creating tables which will be very large, as accessing data in large table is likely to be fairly

laboured when using standard or sorted tables. These tables use a special hash algorithm to

ensure the fast response times to reading records are maintained no matter how many

records are held.

Despite the speed of hashed tables, you will however find that standard and sorted tables

are generally used significantly more in SAP programs. Because of this, the majority of fo-

cus here will be put on these.

Internal Tables - Best Practice Guidelines
As SAP has been around a long time, many programs exist that conform to using the older

style internal table. You must be aware of this without falling into bad habits and using this

style. It is now considered best practice to always use the newer style of internal table in

SAP, ensuring that the programs created will be continue to be usable in the future, once the

older style has been completely abandoned. Both old and new styles will be dis- cussed

here, so that you gain a degree of familiarity with the old style which persists in places, but

when creating programs of your own, the new style should always be used.

 INTERNAL TABLES

Creating Standard and Sorted Tables
Create a new program in the ABAP editor called Z_EMPLOYEES_LIST_03 to use for the

creation of internal tables. To begin to declare an internal table, the DATA statement is

used. The program must be told where the table begins and ends, so use the BEGIN OF

statement, then declare the table name, here ‘itab01’ (itab is a commonly used shorthand

when creating temporary tables in SAP). After this, the OCCURS addition is used,

followed by a number, here 0. OCCURS tells SAP that an internal table is being created,

and the 0 here states that it will not contain any records initially. It will then expand as it is

filled with data:

On a new line, create a field called ‘surname’, which is declared as LIKE zemployees-

surname. Create another field called ‘dob’, LIKE zemployees-dob. It may be useful

initially to give the field names in internal tables the same names as other fields which have

been created elsewhere. By doing this, later on the MOVE–CORRESPONDING

statement can be used to move data from one table to another. Finally, declare the end of

the internal table is declared with “END OF itab01.”

The structure of the internal table is now created, and code can be written to fill it with

records. Using the OCCURS statement above, this automatically tells the system that an old

style internal table with a header record is being used.

As mentioned earlier, it is advisable to always create the new style of internal table, allow-

ing ABAP objects and so on to be used. With the new style of object-oriented program-

ming it is encouraged to keep all the objects of your code separate, so that they can be

reused in other programs and so on. To create the new style of internal table, the code is

slightly different, separating out the individual data objects, like building blocks, which can

then be put together to create new data objects later and so on. The manner in which this is

done may seem significantly more laborious, but when you are working with larger, more

complicated programs, the benefits will be clear.

 INTERNAL TABLES

Create an Internal Table with Separate Work Area
Instead of using the DATA statement, this time start by defining a line type, using the

TYPES statement. Following this, the BEGIN OF statement is used, followed by a name,

here ‘line01_typ’. Below this, the surname and dob fields from above can be created as

before. Then the END OF statement is used to end the line type definition:

Rather than defining the entire table structure at once, here only the structure of one line is

defined. The table itself has not yet been defined. As a result of this, the OCCURS state-

ment has not been used.

Once the line has been defined, next you define the table type. Again, use the TYPES

statement, followed this time by the table, here ‘itab02_typ’ (note the _typ addition to the

end as it is only the table type being defined, not the table itself). Follow this with “TYPE

STANDARD TABLE OF line01_typ.”; telling the system it will be a standard table

containing the structure of the line-type defined above:

In place of the OCCURS clause used for the old style of table, you can optionally add to the

end of the line “INITIAL SIZE (n)” where (n) would be a number corresponding to the

size you initially want the table to be. However, this is completely optional and is not fre-

quently used.

If you want to create a sorted table, the ‘STANDARD’ in the above line is replaced with

‘SORTED’. You then have to specify the table key, with the addition “WITH UNIQUE

KEY (field name)” where (field name) would be one of the fields set up in the line type

defini- tion, in this example ‘surname’. If you want more than one key field, these are

simply then separated by commas:

 INTERNAL TABLES

Next, the table itself must be declared. As the table type defined was based on the line type

previously defined, the table itself will be based on the table type. Here, the DATA

statement returns, followed by the name of the table, ‘itab02’, and the TYPE of table to be

used - ‘itab02_typ’:

You still have the option to use a header line, but this must be explicitly stated when cre-

ating an internal table in this way. To do this, you simply add WITH HEADER LINE to

the code above. This is however, as stated several times already, generally not advisable.

The final thing to do when creating an internal table this way is declare the work area which

will be used in conjunction with the table. Remember that the work area is com- pletely

separate from the table, which has now already been created, allowing one to work with the

data from the table in a way which is removed from it. This also allows for, if one wants,

the same work area to be used for multiple tables, as long as they have the same structures,

an example of reusing the code.

To declare Work Area, again use the DATA statement followed by the work area name,

here ‘wa_itab02’. After this, the TYPE statement is used to specify the line type, here we

can use the one already defined as ‘line01_typ’:

While the manner in which the old style table is created may certainly seem easier, the

newer method is much better and much more flexible. For example, having written all of

the above code, if one then wanted to create a new table with the same structure, only one

new line of code would have to be written, since the line and table types have already

defined. The table ‘itab03’, for example, could be created simply by adding one line of

code:

Filling an Internal Table with Header Line

 INTERNAL TABLES

When you are reading a record from an internal table with a header line, that record is

moved from the table itself into the header line. It is then the header line that you pro- gram

works with. The same applies when creating a new record. It is the header line with which

you work with and from which the new record is sent to the table body itself.

Below appears some slightly more extensive code for an old-style internal table, which can

then be populated:

The fields should broadly be familiar. The only new one here is ‘los’, representing ‘length

of service’, an integer type with a default value of 3.

To start to fill this table, you can use a SELECT statement to select all of the records from

the zemployees table and then use “INTO CORRESPONDING FIELDS OF TABLE

itab01.”, which will move the records from the original table into the new internal table

into the fields where the names correspond. This type of select statement is called an array

fetch, as it fetches all of the records at once, and places them in a new location. Notice that

there is no ENDSELECT statement here - it is not a loop that is created:

As the new los field does not have a corresponding field in the zemployees tables, every

record will have this field populated with the los’ default value of 3. Add a WRITE state-

ment for itab01-surname below just to assist in the debug session coming up. Set a break-

point on the SELECT statement, and execute the code to enter debug mode and observe the

code as it works.

 INTERNAL TABLES

If you view the internal table before executing the next line of code here, you can see that it

is currently empty. The line with the hat icon represents the current contents of the header

line and below this, the lines of the internal table will be filled in. As you execute the array

fetch, all of the lines of the internal table are filled at once:

A different way of filling the table would be with the code below, this time with a select

loop filling each field one at a time, using the MOVE statement to move the data from one

table’s field to the other. Note that los is not present here since it does not have a field in the

zemployees table.

 INTERNAL TABLES

If you debug this code, you can see how it operates line-by-line as opposed to the array

fetch which did all of the records at once. As you execute the first MOVE statement, it is

visible that the first employee number appears in the header record of the internal table:

Stepping through the code you will see the other fields gradually appear in the header line

until the end of the SELECT loop is reached. However, once this happens, since no code

has been included telling the program to append the data in the header record to the in-

ternal table, this will simply be overwritten by the next iteration of the loop. This is a

common mistake when using header lines and can be avoided by using the APPEND

statement.

Before the ENDSELECT statement add another line of code reading “APPEND itab01.”,

tell- ing the system to add the contents of the header line to the internal table.

 INTERNAL TABLES

Move-Corresponding
In the example, the MOVE statement was used several times to move the contents of the

zemployees table to the corresponding fields in the internal table. It is possible however to

accomplish this action with just one line of code. You can use the MOVE-

CORRESPONDING statement. The syntax for this is simply “MOVE-

CORRESPONDING zemployees TO itab01.”, telling the system to move the data from

the fields of zemployees to their corresponding fields in itab01. This is made possible by

the fact that both have matching field names. When making use of this statement you need

to make sure that both fields have matching data types and lengths. This has been done here

with the LIKE statement previously, but if it is not, the results could be unpredictable:

 INTERNAL TABLES

Next, copy the code with which the itab01 table was created to create another internal table

called itab02. This time, the fields will be populated with an INCLUDE statement, so

remove the fields between the BEGIN OF and END OF statements and replace them with

the code “INCLUDE STRUCTURE itab01.” This will create a new table with the same

struc- ture:

You are not limited to using the structure of another internal table, another table created

in the ABAP dictionary’s structure could be used with the same statement:

Using this method can save a lot of time coding, and can be enhanced further allowing you

to include multiple structures within one internal table, as below (though this example

would, in fact, just include two of each column as zemployees and itab01 have effectively

the same structures):

As long as the structures used have previously been defined in the system, this statement

can be used to include many structures within newly created internal tables. You can also

add new data statements as were previously used to declare internal table structures, ex-

tending the structures which have been included with new fields.

Let’s return to the array fetch method of populating internal tables. You will note that when

using this method, all of fields were filled simultaneously, without using the header record.

This is a very effective and quick method to use, given that there is no loop, so re- cords do

not have to be written to the table one at a time:

 INTERNAL TABLES

Additionally, you do not have to use the * which selects all of the fields of zemployees, but

can specify the individual fields you want to move in this way. See the example below:

Filling Internal Tables with a Work Area
Now, if you are, following the newer method of using internal tables, the header record is to

be bypassed entirely and the table filled from a separate work area.

Return to the code which was shown above for creating a table with the new method,

shown below:

Here, the SELECT statement is used again. Since the line type only includes two fields,

only those two fields should be selected. Once they’re selected, INTO is used with the work

area specified as the area to populate. An APPEND statement is added to move the data

from the work area into the table itself. Finally, ENDSELECT is used:

An array fetch can also be used to populate the internal table. Note that here you can still

use the * to select all of the records in zemployees, but as the internal table has only two of

these corresponding fields, the rest will just be ignored:

 INTERNAL TABLES

Using Internal Tables One Line at a Time
Now you know how to fill internal tables with data, a look will be taken at how to use the

data in them line-by-line.

Internal tables are just stored in memory, so cannot be directly accessed, their contents can

only be read via the work area, using a loop. The way this is done is slightly different from

database tables and, rather than using SELECT and ENDSELECT, LOOP and ENDLOOP

are used instead.

First, tables using a header line. Add some new code to your program as follows. Begin the

LOOP and specify the internal table by adding “AT itab01”. Code is then added to achieve

the desired outcome and the loop is closed with ENDLOOP. For example:

If you execute code in debug mode, you will see that for each loop pass, the header line

(represented by the hat icon) is filled with data before being written to the output screen:

 INTERNAL TABLES

Modify
Now a look will be taken at how records in the table can be changed with the MODIFY

statement. Using the code below, the IF statement will check whether an entry’s surname

matches the set value of ‘JONES’. Where it does match, this will be updated to the new

value of ‘SMITH’ in the header line. The MODIFY statement will then update the internal

table itself with the new value. Note that the MODIFY statement here will not create a

brand new record, but will replace the existing JONES record in the table. If a MODIFY

statement is used in a loop, it is always the current line which is changed. This should not

be done if you are trying to modify key fields of an internal table that uses a unique key. If

the MODIFY statement is used outside of a loop, the record index number must be speci-

fied. The way in which the statement is used here can only be used in tables with index

tables or header lines:

Describe and Insert
In the same loop, the DESCRIBE TABLE statement will be used. This statement can be

used to find out information about the content of an internal table, including the number of

records the table holds, the reserve memory space used, and the type of table it is. In

practice you normally only ever really see this being used to find out the first of these three

pieces of information though.

 INTERNAL TABLES

Beneath the ENDIF, add the line of code “DESCRIBE TABLE itab01 LINES line_cnt.”

The LINES part of this statement is used to request the value of the number of lines

contained in the internal table, and ‘line_cnt” is a new variable (of type i) set up to hold this

value.

Up until now, the APPEND statement has been used to add records to the table. This

automatically inserts the new record at the end of the table. If you want to add a record

somewhere in the middle, the INSERT statement should be used, along with the table in-

dex number, to specify the position where a new record is to be inserted. For example, if

you used the index number 10, the new record would appear between the 9th and 10th

records in the table.

The syntax used here is “INSERT itab01 INDEX (n)” where (n) is the index number

where you want to insert the new record. In the example below, (n) is represented by

line_cnt, so the new record will be inserted at the line matching the index number which

corre- sponds to the value of line_cnt. The new record will be inserted on the line before the

last line of the table:

If you execute the code in debug mode, you will see the surname JONES is modified to

become SMITH. The DESCRIBE statement is then triggered and line_cnt given a value of

5. Now, the last record in the table is that with the surname NORTHMORE, employee num-

ber 10000006, so once the loop completes, this is the record held in the header line. The

INSERT statement, then will add a copy of this record at the 5th line of the table. Remem-

ber that, as this is a standard type table, duplicate records are allowed. Because you are in

debug mode you can alter the header record’s values can be manually altered in debug

mode, so a new, non-duplicate record can in fact be created, with the surname BLOGS and

employee number 10000007. The image below shows the header record and internal ta- ble

just before and after the INSERT statement is executed:

 INTERNAL TABLES

Read
The READ statement is another way in which you can access the records of an internal ta-

ble, allowing you to read specific individual records from the table. Given that these ex-

amples are using the old style method and as such using a header line, this record will be

sent to the header line and accessed from there.

The way that the internal table has been declared will affect the way in which a READ

statement’s code is written, bear this in mind. Depending on whether the table has a unique

key or not will also change how the READ statement is specified. For a standard table

without a unique key, the record’s index number is used:

The READ statement is generally the fastest way you can access the records of an internal

table, and using the index number is the fastest way to use this statement. It can be up to 14

times faster than a table key. However, you do not always know the index number of the

record which is to be read. If you are using a table key, the syntax would be as follows:

 INTERNAL TABLES

This can also be done with non-unique keys, but this can become problematic. For exam-

ple, if you used ‘surname’ as your table key and the table contained 3 surnames which were

the same, the system sequentially reads the records resulting in the first occurrence be read.

This type of code, particularly with key fields, can also be used with sorted and hashed

tables, which contain unique key fields.

Delete Records
To delete records from an internal table, you simply use the DELETE statement. This can

be used to delete either individual records or groups of records from a table. The fastest

way of achieving this is by specifying a table index. Note this only applies to standard and

sorted tables as only these two types of tables have an index. The syntax is as follows:

The header line is not used at all. The record to be deleted is directly accessed via its index

number.

This statement can also be used inside a loop:

The code here will identify any record with the surname SMITH and delete it. As you do

not know the index number of SMITH beforehand, the system variable sy-index is used,

which is always set to the index number of the current loop, so when the SMITH record

appears, sy-index will match its index number and the record will be deleted.

 INTERNAL TABLES

The DELETE statement should not be used without the INDEX addition. If used outside of

a loop result in a runtime error, causing the program to crash. Inside a loop, it must be pre-

sent to adhere to future releases of the ABAP syntax.

Another addition to the DELETE statement is the WHERE clause. There are times where

when you will not know the index number of the record you want to delete, so more code

will have to be added. The WHERE addition is useful here, and can be combined with

other logic to locate the record(s) which should be deleted. Using this, you must always be

as specific as possible, otherwise data which should not be deleted can be. The syntax

should look like this:

Note that if there are multiple records which match the logical expression, they will all be

deleted.

Sort Records
The statement used to sort records in an internal table is, unsurprisingly, SORT. The basic

syntax is very simple:

Without any additions, this will sort the records in ascending order by the table’s unique

key. This works for sorted and hashed tables. For a standard table, you must use the BY

addition to specify which fields to sort by:

This would sort the table alphabetically in ascending order by the field SURNAME. Bear in

mind that SAP systems work with a wide variety of languages all at the same time, so if you

are sorting by language-specific criteria, AS TEXT should be added between the table

name and BY addition.

You are not limited to sorting just by one field; you can list up to 250 fields if desired. In

this example, FORENAME is added. Note that it is not necessary to separate these with

commas:

 INTERNAL TABLES

Given the position of AS TEXT in the statement, this will be applied to all fields which are

specified. If you only wanted AS TEXT to apply to forename, it would be placed after the

forename:

By default, the system will sort records in ascending order. This can be changed to de-

scending as shown:

Work Area Differences
Having been through the statements with which one can work with internal tables with a

header record, the old style, now the differences in using these methods with the new,

encouraged style of operating with a separate work area will be looked at

Loops

First, let’s look at the differences in reading data in a loop. Here, the loop will read each

record from the internal table and place each record into the work area instead of the header

line. Because the work area is completely separate from the internal table, the work area

you want to use within the loop must be specified. The INTO addition is used to specify the

work area the record is to be read into:

In this example the records will be read one record at a time into the work area

wa_itab02, then the contents of the surname field will be written to the output screen.

 INTERNAL TABLES

Modify

Using the MODIFY statement with this kind of internal table the statement must specifi-

cally reference the work area. The example below shows our previous MODIFY statement

example altered to work with a work area:

Insert

When working with the INSERT statement with this type of internal table, nothing needs to

change to the DESCRIBE statement. The only change is to the INSERT statement. Here the

new record held in wa_itab02 is to be inserted INTO the internal table itab02:

Read

The READ statement again follows a similar logic, insisting that the work area is also refer-

enced in the code:

Delete

Just as the DELETE statement does not require any reference to the header record to work,

nor does it require any reference to the work area. The statement deletes records from the

table directly by their index number or other key, so operates no differently at all here.

 INTERNAL TABLES

Delete a Table with a Header Line
When working with internal tables, you will often come upon situations where it is neces-

sary to delete all of the records in a table in one go, depending upon the specific task you

trying to complete. For example, if you fill an internal table in a high level loop, you will

want the table to be empty when it comes to the next iteration. This section will explain

how to delete internal tables and their contents, first for those with header lines, then for

those with work areas.

There is a certain sequence of tasks you should adhere to when deleting the contents of an

internal table with a header line. First, you should ensure the header line is clear, then that

the body of the table is clear.

CLEAR

To do the first of these tasks, use the CLEAR statement, followed by the table name. This

will clear out the header line only, and set the header-line fields to their initial value. To

clear the body of the table, the statement is used again, only this time followed by [], de-

leting all of the records in the table itself:

REFRESH

Alternatively, the REFRESH statement can be used. This will clear all records from the ta-

ble, but you must bear in mind that it does not clear the header record, which will still

contain values:

FREE

You could also use the FREE statement, with the same syntax as REFRESH. This

statement not only clears out the internal table, but also frees up the memory which it was

using. It does not mean the table ceases to exist entirely, but no longer is operating in

memory. With this statement, like REFRESH, the header line is unaffected, so the first

CLEAR state- ment must always be used in conjunction with both of these:

 INTERNAL TABLES

Delete a Table with a Work Area
To delete internal tables which are using work areas, similar methods are used. However, as

the work area is an entirely different structure, any code written which will affect the

internal table will not affect the work area, and vice versa.

The CLEAR statement above, when used on a table without a header line, will clear the

whole contents of the table without needing to add the []. Remember that another CLEAR

statement must be used to empty the work area. The same applies to the REFRESH and

FREE statements. The syntax above will work, and a further CLEAR statement must be

used to empty the work area. In the examples below, assume itab01 and wa_itab01 refer to

the newer style internal table and its work area:

 MODULARIZING PROGRAMS

 Modularizing Programs

Introduction
As has been discussed before, it is good practice when using SAP to keep your programs as

self-contained and easy to read as possible. Try to split large, complicated tasks up into

smaller, simpler ones by placing each task in its own separate, individual module which the

developer can concentrate on without other distractions. Modularizing your code al- lows

single tasks to be focussed upon one at a time, without the distraction and confusion which

can be caused if the code you are working with is in the middle of a large, compli- cated

structure. Doing this makes the program much easier to work with and debug. Once a small,

modularized section of code is complete, debugged and so on, it does not subse- quently

have to be returned to, meaning the developer can then move on and focus on other issues.

Creating individual source code modules also prevents one from having to repeatedly write

the same statements again and again, which in turn makes the code easier to read and

understand for anyone coming to it for the first time. This is also useful when it comes to

support. Anyone later having to support the program will again find the code much more

comprehensible if it is written this way.

It is important to concentrate on the design of a program. Rather than starting to code a

solution straight away, a solution should be mapped out, using pseudo-code or flow- charts

for example. Only when the design makes sense should the coding exercise begin. Having a

solution design also helps when modularizing a program, because this allows you to see

how the program can be split up into separate pieces, allowing you to then focus on the

individual pieces of development one piece at a time.

In the chapter covering selection screens, modularization was hinted at with the use of

processing blocks. However, modularization in your own programs is not just limited to

processing blocks. The SAP system allows for a number of techniques to be used to break

a program up into smaller, more manageable sections of code.

This chapter will look at the tools SAP provides for achieving this.

 MODULARIZING PROGRAMS

Includes
When talking about modularization, what we are really talking about is taking a sequence of

ABAP statements and placing them in their own, separate module. We can then ‘call’ this

code module from our program.

Here, some code which has been used previously will be modularized. Below is the code

for the second internal table which was created, the one with a work area, followed by some

logic which will perform tasks involving the internal table:

 MODULARIZING PROGRAMS

First, we will look at INCLUDE programs. INCLUDE’s are made available globally within

an SAP system and their sole purpose is modularizing code. They are simple to define and

accept no parameters. Below the REPORT statement, fill in the statement for declaring an

include. Type INCLUDE and then define a name, here

“Z_EMPLOYEE_DEFINITIONS”:

This statement is telling the program to include the INCLUDE program within our original

program. There are two ways of creating this new INCLUDE program. You can type the

name into the ABAP editor’s initial screen and select the ‘Attributes’ radio button, fol-

lowed by ‘Create’. Then, when the window appears asking what kind of program this is,

select ‘INCLUDE program’:

The second method is by using forward navigation. In the code window, double-click

Z_EMPLOYEE_DEFINITIONS and select ‘Yes’ to create the new object. Save as ‘Local

ob- ject’ as before, and then you will be presented with a new, blank coding screen where

the INCLUDE program code can be typed/inserted:

 MODULARIZING PROGRAMS

Remember, the INCLUDE program is a separate file on the SAP system so can be included

in any other program. The INCLUDE program must be activated itself, and when you acti-

vate any program that includes it, it will always check to see if the INCLUDE program is

active too. If not, error messages will appear. A simple way to activate both at once is to

select both in the menu offered when activating the main program:

In the main program, comment out the section where the line type is defined, and copy &

paste it into the INCLUDE program:

 MODULARIZING PROGRAMS

Because the INCLUDE program has been declared in the main program above, the pro-

gram will continue to work as normal. This is an example of a way in which code can be

effectively outsourced to an INCLUDE program, removing that code from service in the

main program and hence making that program less densely populated with code. This does

not have to be used only for data declarations as in this case. It is commonly used for

sections of programs which involve program logic too.

Procedures
If you want to split programs into separate functional modules, procedures can be used.

These are processing blocks which are called from the main ABAP program, and come in

the form of sub-routines, sub-programs, and function modules.

Sub-routines and sub-programs are mainly used for local modularization of code, mean- ing

small, modular, self-contained units of code called from the program in which they are

defined. These can then, if necessary, be used many times in the program without having to

be typed out repeatedly. Function modules, on the other hand, allow you to create modular

blocks of code which are held separately from an ABAP program and can be called from

any other program.

Sub-routines are local, and function modules are global, and both types of procedure are

commonly used in SAP systems. The latter, though, are probably the more widely used of

 MODULARIZING PROGRAMS

the two. Function modules can be used to encapsulate all of the processing logic used

within the business system, and SAP has ensured that they can be used both by their own

developers and SAP’s customers.

INCLUDE programs cannot accept any parameters; procedures differ here, and have an

interface for transferring data from the calling program to the procedure itself. Because data

can be passed into a procedure, this means that you can define data definitions within the

procedure itself which are only available to that procedure.

Sub-Routines
One of the great benefits of using sub-routines is that it helps to modularize program code

inside the actual program, giving the program structure.

To create a sub-routine, forward navigation is used. Copy, and then comment out, the ar-

ray fetch SELECT statement from the internal table code above:

Above the commented-out section, use the statement PERFORM. This statement is used to

perform a sub-routine. Then a name for the sub-routine is added. Here, since this code fills

the itab02 internal table, call the sub-routine “itab02_fill” as shown:

Double-click the statement then to use forward navigation and create the sub-routine.

Answer ‘Yes’ to the dialog box and a window appears asking where the sub-routine is to be

created. A choice is offered between the main program, the INCLUDE program and a new

INCLUDE program which can be created. Select the main program here. Once this is done,

code block starting with ‘form’ and ending with ‘endform.’ Is created located at the end of

your program, where the code for the sub-routine can be filled in. Paste in the code for the

array fetch, and the sub-routine is created:

 MODULARIZING PROGRAMS

When the PERFORM statement is reached as the program executes, the sub-routine cre-

ated will be triggered, meaning that the array fetch is performed in exactly the same way as

previously. Once ‘endform.’ is reached, processing returns to the next statement fol- lowing

PERFORM and continues as normal, terminating at the end. Though the sub- routine does

appear at the bottom of the code, the system can identify it as a sub-routine and hence it will

not be executed again.

Up until now, only global variables have been discussed. These are variables which are

defined as in the program itself, usually at the top of the program and, in this instance, the

INCLUDE program. These variables, including internal tables and so on, can be accessed

throughout the program. If variables are declared only in sub-routines, however, these are

considered local variables. These can only be accessed within the single sub-routine where

they are declared. Once control passes back to the main body of the program, local vari-

ables can no longer be referenced.

Given that these variables only have to be declared within sub-routines, rather than the

whole program, memory usage is kept to a minimum. Additionally, these can be useful in

helping keep everything self-contained and modularized. As mentioned previously, sub-

routines have an interface, and these local variables can be used in the interface.

To declare a local variable, one simply uses the DATA statement as normal within the sub-

routine. Declare one of these named “zempl”, which is LIKE zemployees-surname. This

new variable can now only be referenced by other code which appears in the sub-routine,

between form and endform. You can also declare a variable to be used in the interface. In

 MODULARIZING PROGRAMS

doing this, the system is being told that data will be transferred to the sub-routine data

interface.

Create code for a second sub-routine, called “itab_02_fill_again” and above this create 2

new DATA fields, as shown in the example below, telling the new sub-routine to use the

new data fields. Then use forward navigation to create this sub-routine:

Note the difference in how the new sub-routine appears. This form has now been gener-

ated including two fields which will then be used in the interface. It is advisable here to

rename the fields in the sub-routine so you know what they refer to:

Notice that there is no data type for these fields, since they are taken from the fields ref-

erenced in the PERFORM statement, however, they will take on the same properties as

those fields. Add some new code to the form as shown below. The values of p_zsurname

and p_zforename will be written, then the value of p_zsurname changed to ‘abcde’:

 MODULARIZING PROGRAMS

Ensure these fields hold some data by giving z_field1 and z_field2 values in the main pro-

gram:

When the PERFORM statement is executed, these values will be passed through to the

fields in the sub-routine. Add a breakpoint above this and run the program can be run in

debug mode.

You can see z_field1 and z_field2 are filled with their initial values:

Next, the sub-routine is entered and the values of these fields are passed in via the inter-

face, so that the local variables here take on the same values as those in the main pro- gram:

The two WRITE statements are then executed, followed by the change in value for

p_zsurname. Because the field is used in the interface, the global variable, z_field1’s value

also changes:

 MODULARIZING PROGRAMS

When using fields in the interface, it is important to keep this in mind. Any fields attached

to the USING addition that are changed in the sub-routine will also be changed in the pro-

gram.

Passing Tables

Sub-routines are not limited to only passing individual fields. Internal tables can also be

passed, as well as a combination of both fields and tables. When passing fields though, one

must always get the sequence of field names correct, as it is the sequence which will

determine which field is passed to the interface variable of the form.

Create a new sub-routine called itab02_write. Then, use the TABLES addition to specify

the table to be passed, here itab02:

Removing any unnecessary code, the form will look like this:

Using the TABLES addition, the program ensures that the contents of the internal table are

transferred to the subroutine and stored in the internal table p_itab_02. Once this sub-

routine is processed, the contents of the local internal table are then passed back to the

global internal table.

 MODULARIZING PROGRAMS

Note that this method is for a table without a header line. If this code was used with an old-

style internal table, only the header line would be passed to the table. To pass the full table,

you need to add [] at the end of the statement.

When an internal table is passed into a sub-routine, the local internal table is always de-

clared with a header line. Write some code and then debug the program to see this. The

code below will loop through the records of the internal table, sending the contents to a

temporary work area and then writing the contents of the surname field to the output screen:

When analysed in debug mode, the itab02 table does not have a header record, but p_itab02

does:

Still, since a new work area was created for the LOOP statement to follow, the header re-

cord becomes irrelevant.

Passing Tables and Fields Together

Now, a combination of fields and tables will be passed into a subroutine at the same time.

Create another PERFORM statement, called itab02_multi. Retain the TABLES statement,

but then add the USING statement afterwards:

 MODULARIZING PROGRAMS

Use forward navigation to generate the form.

You can then use write code to interact with both fields and the table.

Sub-Routines - External Programs
Sub-routines were initially designed for modularizing and structuring a program, but they

can be extended so that they can be called externally from other programs. Generally to do

this, though, one should create function modules instead.

If you do want to create external sub-routines, however, this is possible. There are two ways

in which a sub-routine can be called from an external program. The first of these is the one

which should really always be used if doing this, as this is compatible with the use of

ABAP objects.

If you want to call a sub-routine called ‘sub_1’, held in a program called ‘zemployee_hire’,

the code would look like this. Note that additions can still be used with this method:

The difference here is that the sub-routine is being called from a separate program in the

SAP system.

The second form is very similar, and works the same with additions and so on, the pro-

gram is just included in brackets. Keep in mind though this form of the code cannot be used

with ABAP objects:

Calling external sub-routines is not common practice, sub-routines tend to stay internal to

the program and where you want to call sub-routines in external programs, this is usually

done via function modules.

 MODULARIZING PROGRAMS

Function Modules
Function modules make up a major part of an SAP system, because for years SAP have

modularized code using them, allowing for code re-use, first by themselves and their de-

velopers, then by customers.

Function modules refer to specific procedures which are defined in function groups, and

can be called from any other ABAP program. The function group acts as a kind of container

for a number of function modules which would logically belong together, for example, the

function modules for an HR payroll system would be put together into a function group.

SAP systems have thousands of function modules available for use in programs, so if you

search around the system it will often be possible to find pre-existing modules for the tasks

you may be asked to code.

To look at how to create function modules, the function builder must be looked at. This is

found via the menu at the very beginning of the system, via the SAP menu Tools

ABAP Workbench Development. There one will find the function builder, with transac-

tion code SE37:

 MODULARIZING PROGRAMS

Before diving into an example of how to use a function module we need look at how func-

tion modules are put together, so as to understand how to use them in a program.

Function Modules – Components
The initial screen of the function builder appears like this:

 MODULARIZING PROGRAMS

Rather than typing the full name here, part of a function module name will be typed with a

wild card character to demonstrate the way function modules can be searched for. Type

amount and then press the F4 key. The results of the search will then be displayed in a

new window:

The function modules are displayed in the lines with a blue background and their function

groups in the pink lines above. If you would like to look further at the function group

ISOC, the Object Navigator screen (se80) can be used. This screen can in fact be used to

navigate many objects held in the SAP system, not only function modules but programs and

so on, using the menus on the left hand side of the screen. Here, we can see a list of

function modules (and other objects) held in the function group ISOC:

 MODULARIZING PROGRAMS

The four which showed up in the *amount* search are present, along with a number of

others. If double-click any of these function modules, the code for that function module will

appear on screen to the right of the menu:

 MODULARIZING PROGRAMS

Return back to the function builder screen, do the *amount* search again and this time

select the function module SPELL_AMOUNT. Double-click it and choose Display.

The code will then appear in a screen similar to that of the ABAP editor. There are, how-

ever, a series of tabs along the top which will now be looked at.

 MODULARIZING PROGRAMS

Attributes Tab

This shows the function group and some descriptive text for the function module, as well

as some options for the function module’s processing type, plus some general data.

Import Tab

This lists the fields which will be used in the data interface which are passed into the func-

tion module from the calling program. These fields are then used by the function module

code:

 MODULARIZING PROGRAMS

Take note of the different column labels. The fifth column, with a checkbox, is labelled

‘Optional’, meaning that these fields do not have to be passed into the function module by

the calling program. More often than not though, there will be at least one mandatory field.

Export Tab

This specifies the fields which are sent back to the calling program once the function mod-

ule’s code has been processed:

Changing Tab

This lists fields which can be changed by the function module.

Tables Tab

Like sub-routines, with function modules you are not restricted to only passing in fields, but

can also pass in internal tables.

Exceptions Tab

This tab lists exception information which can be passed back to the calling program, which

indicate whether the function module was executed successfully or not. This is where

specific error messages for can be defined to identify any specific errors or warn- ings that

occur during code execution that need to be passed back to the calling program to allow the

programmer take the necessary course of action.

 MODULARIZING PROGRAMS

Source Code Tab

The final tab is the source code itself for the function module, which appears automati-

cally when one opens it from the function builder screen. Here, you can examine the code in

depth so as to determine what exactly the function module is doing.

With pre-existing function modules you generally do not even have to look at this, as you

should know what data the function module is supposed to send back.

The function module in this example converts numeric figures into words, so there is little

need to examine the code in depth if one already knows what the output is to be.

Function Module Testing
As Function Modules are created as separate objects, there are tools you can use to test

function modules without having to write the code to call them. Just as programs can be

tested and their output checked, you can do exactly the same with function modules. This is

done with the F8 key or the same Test/Execute icon found in your own programs. In fact,

you don’t even have to be within the function module to do test it out. It can be done from

the initial SE37 screen once the module’s name appears in the appropriate field:

Test out the function module using the Test button as shown above.

 MODULARIZING PROGRAMS

As all fields are optional, this can then be executed without inputting any data.

Since the amount in the import parameters was 0, the export parameters then read ZERO. If

you click the small button in the Value column of the export parameters, the results are

broken into their individual export fields.

 MODULARIZING PROGRAMS

The number input was 0, the decimal value was 0 and a currency was not specified, so the

WORD output is simply ZERO.

Let’s run the test again but this time enter some data into the AMOUNT field and CUR-

RENCY field. Then execute the test again.

 MODULARIZING PROGRAMS

This output may look odd, but when the button is pressed you will see that, as GBP has 2

decimals, the value 56 has been included in the decimals column rather than the number

column:

If you were to select a currency which does not use decimals, the full number would ap-

pear.

The ability to test function modules in this way is a great time saver for the programmer, as

it allows you to confirm whether a function module will complete the tasks you want before

generating the code to use it in your program.

 MODULARIZING PROGRAMS

	UNIT – V
	Dr.A.DEVI
	Associate Professor
	Department of Computer Applications
	DRSNSRCAS
	Internal Tables
	Introduction
	Types of Internal Tables
	Standard Tables
	Sorted Tables
	Hashed Table

	Internal Tables - Best Practice Guidelines
	Creating Standard and Sorted Tables
	Create an Internal Table with Separate Work Area
	Filling an Internal Table with Header Line
	Move-Corresponding
	Filling Internal Tables with a Work Area
	Using Internal Tables One Line at a Time
	Modify
	Describe and Insert
	Read
	Delete Records
	Sort Records
	Work Area Differences
	Loops
	Modify
	Insert
	Read
	Delete

	Delete a Table with a Header Line
	CLEAR
	REFRESH
	FREE

	Delete a Table with a Work Area

	Modularizing Programs
	Introduction
	Includes
	Procedures
	Sub-Routines
	Passing Tables
	Passing Tables and Fields Together

	Sub-Routines - External Programs
	Function Modules
	Function Modules – Components
	Attributes Tab
	Import Tab
	Export Tab
	Changing Tab
	Tables Tab
	Exceptions Tab
	Source Code Tab

	Function Module Testing

